
1/11

Introduction to Regular Expressions
Using Regular Expressions

Regular Expressions

Dylan Lane McDonald

CNM STEMulus Center
Web Development with PHP

November 11, 2015

Dylan Lane McDonald Regular Expressions

2/11

Introduction to Regular Expressions
Using Regular Expressions

Outline

1 Introduction to Regular Expressions
Theoretical Foundations
Finite State Machines

2 Using Regular Expressions
Common Syntax
JavaScript
PHP

Dylan Lane McDonald Regular Expressions

3/11

Introduction to Regular Expressions
Using Regular Expressions

Theoretical Foundations
Finite State Machines

What are Regular Expressions?

Definition

A regular expression is a pattern that represents all the possible permutations of a
string.

Think of a regular expression as a plan for how strings should look. Informally, a regular
expression for a US ZIP code would be, “Five digits, optionally followed by a dash and
four digits.” The regular expression doesn’t name all the possible ZIP codes, but gives
an acceptance test as to whether a given string is a valid ZIP code. For instance:

87102: Pass

87102-3516: Pass

871023516: Fail

8710: Fail

Dylan Lane McDonald Regular Expressions

3/11

Introduction to Regular Expressions
Using Regular Expressions

Theoretical Foundations
Finite State Machines

What are Regular Expressions?

Definition

A regular expression is a pattern that represents all the possible permutations of a
string.

Think of a regular expression as a plan for how strings should look. Informally, a regular
expression for a US ZIP code would be, “Five digits, optionally followed by a dash and
four digits.” The regular expression doesn’t name all the possible ZIP codes, but gives
an acceptance test as to whether a given string is a valid ZIP code. For instance:

87102: Pass

87102-3516: Pass

871023516: Fail

8710: Fail

Dylan Lane McDonald Regular Expressions

4/11

Introduction to Regular Expressions
Using Regular Expressions

Theoretical Foundations
Finite State Machines

Formalizing Regular Expressions

Regular expressions fundamentally work with strings, whose atomic unit is a character.
The set of all possible characters in a string is known as an alphabet, denoted by the
Greek letter Σ. Regular expressions have three basic operations on alphabets:

Separation: the Boolean OR, “either this character or that character”

Quantification: The number of characters expected in this part of the string
(e.g., “3 or more digits”)

Grouping: denoted by parentheses, characters in an alphabet are grouped to
define the scope and precedence of separation of quantification

A regular expression is simply a sequence of one or more of the preceding operations.

Dylan Lane McDonald Regular Expressions

5/11

Introduction to Regular Expressions
Using Regular Expressions

Theoretical Foundations
Finite State Machines

Further Formalizing Regular Expressions

Take an informal regular expression for allowable file names: “Start with an alphabetic
character, optionally followed by 0 or more alphanumeric characters, followed by 1 dot,
followed by two or three alphabetic characters.”

Notice we have three alphabets:

1 Σα = {a, b, c , . . . , z} (alphabetic)

2 Σδ = {0, 1, 2, . . . , 9} (numeric)

3 Σ. = {.} (dot)

Let * denote “0 or more” and ? denote “0 or 1.” Now, we can denote this regular
expression as:

α [α | δ]∗ .α2α?

Internally, the regular expression engine creates a finite state machine, as depicted in
Figure 1.

Dylan Lane McDonald Regular Expressions

5/11

Introduction to Regular Expressions
Using Regular Expressions

Theoretical Foundations
Finite State Machines

Further Formalizing Regular Expressions

Take an informal regular expression for allowable file names: “Start with an alphabetic
character, optionally followed by 0 or more alphanumeric characters, followed by 1 dot,
followed by two or three alphabetic characters.” Notice we have three alphabets:

1 Σα = {a, b, c , . . . , z} (alphabetic)

2 Σδ = {0, 1, 2, . . . , 9} (numeric)

3 Σ. = {.} (dot)

Let * denote “0 or more” and ? denote “0 or 1.” Now, we can denote this regular
expression as:

α [α | δ]∗ .α2α?

Internally, the regular expression engine creates a finite state machine, as depicted in
Figure 1.

Dylan Lane McDonald Regular Expressions

5/11

Introduction to Regular Expressions
Using Regular Expressions

Theoretical Foundations
Finite State Machines

Further Formalizing Regular Expressions

Take an informal regular expression for allowable file names: “Start with an alphabetic
character, optionally followed by 0 or more alphanumeric characters, followed by 1 dot,
followed by two or three alphabetic characters.” Notice we have three alphabets:

1 Σα = {a, b, c , . . . , z} (alphabetic)

2 Σδ = {0, 1, 2, . . . , 9} (numeric)

3 Σ. = {.} (dot)

Let * denote “0 or more” and ? denote “0 or 1.” Now, we can denote this regular
expression as:

α [α | δ]∗ .α2α?

Internally, the regular expression engine creates a finite state machine, as depicted in
Figure 1.

Dylan Lane McDonald Regular Expressions

6/11

Introduction to Regular Expressions
Using Regular Expressions

Theoretical Foundations
Finite State Machines

Finite State Machine

The finite state machine is basically a formal map of how strings are formed. If the
string can arrive at the terminal states q5 or q6, we say the string passes the regular
expression. Otherwise, it gets stuck in the finite state machine and fails.

Figure 1: Finite State Machine

All regular expressions can be expressed as finite state machines and all deterministic
finite state machines can be expressed as regular expressions.

Dylan Lane McDonald Regular Expressions

7/11

Introduction to Regular Expressions
Using Regular Expressions

Common Syntax
JavaScript
PHP

Character Classes & Operators

Regular expressions come in two major flavors: Perl Compatible Regular Expressions
(PCREs) and POSIX. PHP and JavaScript use PCRE syntax.1 This is a partial list.
Use a cheat sheet! [1]

Item Comment Item Comment
. (dot) matches any character \s Whitespaces [\t\r\n\v]
$ end of line * Zero or more

^ beginning of line ? Zero or one

[abc] Characters a, b, or c + One or more

\d Digits [0-9] {m,n} m or more, no more than n

Table 1: Common Regular Expression Commands

1PHP has deprecated functions for POSIX regular expressions.
Dylan Lane McDonald Regular Expressions

8/11

Introduction to Regular Expressions
Using Regular Expressions

Common Syntax
JavaScript
PHP

JavaScript Regular Expressions

v a r r e g e x = / ˆ [a−z] [\ da−z] ∗ \ . [a−z] { 2 } [a−z] ? $ / ;
v a r p a s s e d = r e g e x . t e s t (” f o o . j s ”) ;
i f (p a s s e d === true) {

c o n s o l e . log (” R e g u l a r e x p r e s s i o n p a s s e d ”) ;
} e l s e {

c o n s o l e . log (” R e g u l a r e x p r e s s i o n f a i l e d ”) ;
}

Listing 1: JavaScript Regular Expression Example

Dylan Lane McDonald Regular Expressions

9/11

Introduction to Regular Expressions
Using Regular Expressions

Common Syntax
JavaScript
PHP

PHP Regular Expressions

$ r e g e x = ” / ˆ [a−z] [\ da−z] ∗ \ . [a−z] { 2 } [a−z] ? $/” ;
$ p a s s e d = preg match ($regex , ” f o o . php”) ;
i f (p a s s e d === 1) {

echo ” R e g u l a r e x p r e s s i o n p a s s e d ” ;
} e l s e {

echo ” R e g u l a r e x p r e s s i o n f a i l e d ” ;
}

Listing 2: PHP Regular Expression Example

Dylan Lane McDonald Regular Expressions

10/11

Introduction to Regular Expressions
Using Regular Expressions

Common Syntax
JavaScript
PHP

Debugging & Using Regular Expressions

Regular expressions are powerful tools. However, they require a lot of overhead and are
inefficient for simple matching and separating. A few more hints to consider when
using regular expressions:

Listings 1 & 2 employ a useful tactic: start the regular expression with a ˆ and
end it with a $. This will strictly ensure what you’re trying to match is on a single
line and not split on multiple lines.

Always debug and test your regular expressions thoroughly. Regex Planet and PHP
Live Regex are useful tools for constructing and testing regular expressions. [2, 3]

Used effectively, regular expressions are the most powerful weapon against malicious
and incompetent users.

Dylan Lane McDonald Regular Expressions

11/11

Introduction to Regular Expressions
Using Regular Expressions

Common Syntax
JavaScript
PHP

Cheat Sheet & Tools

Cheatography.
Regular expression cheat sheet.
http://www.cheatography.com/davechild/cheat-sheets/

regular-expressions/pdf/.

Regex 101.
Regex 101.
http://www.regex101.com/.

Philip Bjorge.
Php live regex.
http://www.phpliveregex.com/.

Dylan Lane McDonald Regular Expressions

http://www.cheatography.com/davechild/cheat-sheets/regular-expressions/pdf/
http://www.cheatography.com/davechild/cheat-sheets/regular-expressions/pdf/
http://www.regex101.com/
http://www.phpliveregex.com/

	Introduction to Regular Expressions
	Theoretical Foundations
	Finite State Machines

	Using Regular Expressions
	Common Syntax
	JavaScript
	PHP

